百度知道 - 信息提示
高等数学二重积分问题?
这是一个分段函数
被积函数F(x,y)=xy,(x^2+y^2<1)
=2xy,(1≤x^2+y^2≤√2)
所以
高数二重积分问题
这是我的理解:
二重积分和二次积分的区别
二重积分是有关面积的积分,二次积分是两次单变量积分。
①当f(x,y)在有界闭区域内连续,那么二重积分和二次积分相等。对开区域或无界区域这关系不衡成立。
②可二次积分不一定能二重积分。如对[0,1]*[0,1]区域,对任意x∈[0,1]可定义一个对y连续的函数g(x,y)(y∈[0,1])∫g(x,y)dy=1.那么∫dx∫g(x,y)dy有意义,一般地∫∫g(x,y)dσ没意义。
③可以二重积分不一定能二次积分。区域S={(x,y)|x>=1,|y|<=1/x^3}。恒等函数f(x,y)=1,(x,y)∈S。f在S上可以二重积分却不能二次积分(先对x再对y求积分,在y=0那条线上积分无穷)。
积分对调
上面③的例子中积分对调了一个可以积分,一个不可以积分(先对y积分x固定时积分得到2/x^3.2/x^3对x(x属于[1,无穷)可积分。
可对调x,y的情况是
连续且绝对可积,对x或y求分步积分存在。特殊情况函数在有界闭区域连续可对调x,y,这时由于连续性函数在闭区域存在极值。
积分变换一定要求变换后的积分区间与原来相同,且不能有重复积分的情况